Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection.

نویسندگان

  • K Thankavel
  • B Madison
  • T Ikeda
  • R Malaviya
  • A H Shah
  • P M Arumugam
  • S N Abraham
چکیده

The FimH subunit of type 1-fimbriated Escherichia coli has been implicated as an important determinant of bacterial adherence and colonization of the urinary tract. Here, we sought to localize the functionally important domain(s) within the FimH molecule and to determine if antibodies against this domain would block adherence of type 1-fimbriated E. coli to the bladder mucosa in situ and in vivo in an established mouse model of cystitis. We generated translational fusion proteins of disparate regions of the FimH molecule with an affinity tag MalE, and tested each of the fusion products in vitro for functional activity. The minimum region responsible for binding mouse bladder epithelial cells and a soluble mannoprotein, horseradish peroxidase, was contained within residues 1-100 of the FimH molecule. We validated and extended these findings by demonstrating that antibodies directed at the putative binding region of FimH or at synthetic peptides corresponding to epitopes within the binding domain could specifically block type 1 fimbriae-mediated bacterial adherence to bladder epithelial cells in situ and yeast cells in vitro. Next, we compared the ability of mice passively immunized intraperitoneally with antisera raised against residues 1-25 and 253-264 of FimH or 1-13 of FimA to resist bladder colonization in vivo after intravesicular challenge with type 1-fimbriated E. coli. Only the antibody directed at the putative binding region of FimH (anti- s-FimH1-25) significantly reduced E. coli bladder infections in the experimental mouse model of urinary tract infections. Similar results were obtained when the mice were actively immunized with synthetic peptides corresponding to residues 1-25 and 253-264 of FimH or 1-13 of FimA. The mechanism of protection was attributed, at least in part, to inhibition of bacterial adherence to the bladder surface by s-FimH1-25-specific antibody molecules that had filtered through the kidneys into the urine. The level of FimH antibodies entering the bladder from the circulatory system of the immunized mice was found to be markedly enhanced upon bacterial challenge. The potential broad spectrum activity of the protective FimH antibody was indicated from its serologic cross-reactivity with various urinary tract bacterial isolates bearing type 1 fimbriae. These findings could be relevant in the design of an efficacious and broadly reactive FimH vaccine against urinary tract infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type 1 fimbrial adhesin FimH elicits an immune response that enhances cell adhesion of Escherichia coli.

Escherichia coli causes about 90% of urinary tract infections (UTI), and more than 95% of all UTI-causing E. coli express type 1 fimbriae. The fimbrial tip-positioned adhesive protein FimH utilizes a shear force-enhanced, so-called catch-bond mechanism of interaction with its receptor, mannose, where the lectin domain of FimH shifts from a low- to a high-affinity conformation upon separation fr...

متن کامل

The Importance of Escherichia Coli Fimbriae in Urinary Tract Infection

Urinary tract infection (UTI) is a major bacterial infectious disease among women. Uropathogenic Escherichia coli is the most dominant causative agent. Clinical observations indicate that repeated cystitis induces a protective immune response and secretory IgA has been suggested as one of the candidates involved in the defence mechanisms against bladder infections. The aims of the present study...

متن کامل

In silico Study of Toll-Like Receptor 4 Binding Site of FimH from Uropathogenic Escherichia coli

  Introduction : The innate immune system as the first line of defense against the pathogens recognizes pathogen-associated molecular patterns (PAMPs) by Toll-Like Receptors (TLRs). Interaction of bacterial PAMPs by TLRs results in activation of innate and acquired immunity. FimH adhesin, a minor component of type 1 fimbriae encoded by Uropathogenic Escherichia coli (UPEC) is a PAMP of TLR4 tha...

متن کامل

Catch-bond mechanism of the bacterial adhesin FimH.

Ligand-receptor interactions that are reinforced by mechanical stress, so-called catch-bonds, play a major role in cell-cell adhesion. They critically contribute to widespread urinary tract infections by pathogenic Escherichia coli strains. These pathogens attach to host epithelia via the adhesin FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial gl...

متن کامل

Development and Evaluation of Vaccines based on Fimbrial Adhesins of Escherichia coli

With most pathogens acquiring resistance to currently used drugs, the development and formulation of vaccines against predominant infectious diseases has taken centre stage. Bacterial pathogens utilize a wide variety of virulence factors that are critical for disease, and therefore make attractive vaccine candidates. Fimbriae are one type of these virulence factors and mediate adherence to host...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 100 5  شماره 

صفحات  -

تاریخ انتشار 1997